

Geometric Preferences in Iron(II) and Zinc(II) Model Complexes of Peptide Deformylase

Vivek V. Karambelkar,† Chuanyun Xiao,‡ Yingkai Zhang,‡ Amy A. Narducci Sarjeant,† and David P. Goldberg*,†

*Department of Chemistry, Johns Hopkins Uni*V*ersity, 3400 North Charles Street, Baltimore, Maryland 21218, and Department of Chemistry, New York University, New York, New York 10003*

Received June 17, 2005

A combination of experimental and theoretical studies on (N,S- (thiolate))M^{II}–formate complexes ($M = Fe$, Zn) suggests a rationale for the metal ion dependence of peptide deformylase.

On the basis of active-site structure (tetrahedral (His_2Cys) - $M^{II}(OH_n)$), conserved sequence motifs, and function (hydrolysis), peptide deformylase (PDF) belongs to the mononuclear zinc (II) enzyme family.¹ However, recent evidence shows bacterial PDF to be the first example of an iron(II) metallopeptidase, which hydrolyzes the formyl bond of the N-terminus of newly synthesized polypeptides. 2^{-4} Intriguingly, the Zn^{II} form of bacterial PDF is dramatically less active than the Fe^{II} form, although their native structures are identical.4-⁶ The mechanism of this enzyme and an explanation of the metal-ion dependence are under investigation. PDF is also a target for new antibiotic agents, and therefore, knowledge regarding its mechanism is of practical significance.⁷ We are involved in the synthesis of Zn^{II} and Fe^{II} model complexes of PDF to gain a better understanding of the mechanism and unusual metal dependence of this enzyme.

Previously, we reported the synthesis of $(PATH)Zn^{II}(O₂ CH)$ (PATH $= 2$ -methyl-1-[methyl-(2-pyridin-2-ylethyl)amino]propane-2-thiolate), a model complex of the putative

- (2) Baldwin, E. T.; Harris, M. S.; Yem, A. W.; Wolfe, C. L.; Vosters, A. F.; Curry, K. A.; Murray, R. W.; Bock, J. H.; Marshall, V. P.; Cialdella, J. I.; Merchant, M. H.; Choi, G.; Deibel, M. R., Jr. *J. Biol. Chem.*
- **²⁰⁰²**, *²⁷⁷*, 31163-31171. (3) Becker, A.; Schlichting, I.; Kabsch, W.; Groche, D.; Schultz, S.; Wagner, A. F. V. *Nat. Struct. Biol.* **¹⁹⁹⁸**, *⁵*, 1053-1058.
- (4) (a) Rajagopalan, P. T. R.; Yu, X. C.; Pei, D. *J. Am. Chem. Soc.* **1997**, *¹¹⁹*, 12418-12419. (b) Groche, D.; Becker, A.; Schlichting, I.; Kabsch, W.; Schultz, S.; Wagner, A. F. V. *Biochem. Biophys. Res. Commun.* **¹⁹⁹⁸**, *²⁴⁶*, 342-346. (5) Rajagopalan, P. T. R.; Grimme, S.; Pei, D. *Biochemistry* **2000**, *39*,
- 779–790.
Ragusa: S
- (6) Ragusa, S.; Blanquet, S.; Meinnel, T. *J. Mol. Biol.* **¹⁹⁹⁸**, *²⁸⁰*, 515- 523
- (7) Yuan, Z.; Trias, J.; White, R. J. *Drug Disco*V*. Today* **²⁰⁰¹**, *⁶*, 954- 961.

10.1021/ic050995s CCC: \$33.50 © 2006 American Chemical Society **Inorganic Chemistry,** Vol. 45, No. 4, 2006 **1409** Published on Web 01/24/2006

 $(formate)Zn^{II}-PDF$ intermediate.⁸ Analysis of the bonding mode in this complex showed that the formate was coordinated in an anisobidentate fashion. It was suggested that this bonding mode, as opposed to a purely monodentate interaction, might slow the displacement of formate by water in the final step of the catalytic cycle and account for the low reactivity of Zn-PDF. Following this argument, it was expected that the analogous (formate) $Fe^{II}-PDF$ would exhibit a monodentate bonding mode.

Recently, high-resolution X-ray structures of (formate)- M^H-PDF (M = Zn, Fe) from Chan and co-workers have revealed bonding motifs in contrast to our prediction; monodentate coordination was observed in the case of Zn^{II} , and bidentate coordination was seen for Fe^{II}.⁹ To further address the question of geometric preference in $\mathbb{Z}n^{II}-$ and Fe^{II}-formate model complexes, we have synthesized and structurally characterized the first iron (II) -formate complex with thiolate ligation, $(Py_2S)Fe^{II}(O_2CH)$ (1), and have conducted high-level theoretical calculations on this complex and the related formate complexes $(PATH)Zn(O_2CH)$, $(PATH)Fe(O₂CH)$, and $(Py₂S)Zn(O₂CH)$. Geometry optimizations, including calculations in which the potential energy surface was scanned with respect to one of the formate oxygen-to-MII distances, provide detailed information regarding the preferred bonding mode in these complexes. Although **1** is not an exact replica of the enzyme, the trends discovered by comparing the experimental and theoretical results for this complex and the other formate complexes allow us to formulate a new hypothesis regarding the differences in reactivity of zinc(II) and iron(II) in the PDF active site. In addition, the syntheses of the new zinc (II) -formate complexes $[(Py_2S)Zn_2(O_2CH)_3]$ (2) and $[(Py_2S)_2Zn_3(O_2CH)_2]$ - $(BF_4)_2$ (3) are described.

The synthesis of **1** is shown in Scheme 1. Addition of $(Py_2S^-)Na^+$ to ferrous formate in MeOH gives a cloudy, yellow solution which turns clear over 18 h. Removal of

^{*} To whom correspondence should be addressed. E-mail: dpg@jhu.edu. † Johns Hopkins University.

[‡] New York University.

⁽¹⁾ Lipscomb, W. N.; Sträter, N. *Chem. Rev.* **1996**, *96*, 2375-2433.

⁽⁸⁾ Chang, S.; Sommer, R. D.; Rheingold, A. L.; Goldberg, D. P. *Chem. Commun.* **²⁰⁰¹**, 2396-2397.

⁽⁹⁾ Jain, R.; Hao, B.; Liu, R.; Chan, M. K. *J. Am. Chem. Soc.* **2005**, *127*, ⁴⁵⁵⁸-4559.

COMMUNICATION

Table 1. Bond Lengths (A) of Fe^{II} - and Zn^{II} -Formate Complexes from X-ray Crystallography and DFT Calculations

complex	$M=O(1)$	$M=O(2)$	$M-N(1)$	$M-N(2)$	$M-N(3)$	$M-S(1)$
$(P_{V_2}S)Fe(O_2CH)^a$	2.073(4)	4.120(4)	2.144(4)	2.366(4)	2.161(5)	2.319(1)
$(PATH)Zn(O_2CH)^a$	2.005(2)	2.614(2)	2.054(2)	2.132(2)		2.2552(6)
$(Py_2S)Fe(O_2CH)^b$ (isomer a)	.991	3.587	2.204	2.519	2.186	2.330
$(Py_2S)Fe(O_2CH)^b$ (isomer b)	2.257	2.175	2.297	2.285	2.208	2.383
$(Py_2S)Zn(O_2CH)^b$ (isomer a)	2.030	3.630	2.120	2.568	2.146	2.298
$(Py_2S)Zn(O_2CH)^b$ (isomer b)	3.023	2.030	2.121	2.593	2.199	2.298
$(PATH)Zn(O_2CH)^b$	1.954	2.812	2.097	2.203		2.270
(PATH)Fe(O ₂ CH) ^b	2.090	2.320	2.149	2.272		2.316

^a X-ray structure. *^b* Optimized structure from B3LYP/6-311G* calculations.

Figure 1. ORTEP plot of $(Py_2S)Fe^{II}(O_2CH)$ with 40% probability thermal ellipsoids.

Scheme 1

the solvent under vacuum gives an orange solid which can be partly redissolved in toluene. Crystals of **1** were grown from Et_2O/t oluene, and an ORTEP diagram of 1 is shown in Figure 1. The iron center is in a five-coordinate geometry with the formate ligand occupying the axial position opposite the N(amine) donor. The N(pyridyl) $-Fe^{II}$ and $S-Fe^{II}$ distances (Table 1) are in the normal range. The $N(\text{amine})$ – Fe^{II} distance of 2.366(4) Å is long, but is quite close to the related complexes (Py₂S)Fe^{II}X (X = Br, N(amine)-Fe^{II} = 2.387(1) Å; $X = C1$ (2.352(2) Å).¹⁰ There is no obvious reason for the elongation of this bond in these complexes, and theoretical calculations show that another isomer of **1** with a more conventional $Fe^{II}-N(amine)$ distance should be accessible (vide infra). Interestingly, the formate ligand is clearly monodentate with $Fe-O(2) = 4.120(4)$ Å and is in fact bound in an anti disposition. Analysis of the angles around Fe(1) $(\tau = 0.76)$ clearly shows the geometry is trigonal bipyramidal. 11

The ¹H NMR spectrum of **1** in CD₃CN exhibits reasonably sharp, paramagnetically shifted peaks over the range $+78$ to -25 ppm, which is characteristic of a high-spin Fe^{II} complex, and the pattern of peaks is similar to that observed for the complexes (Py₂S)Fe^{II}X (X = Br, Cl).¹⁰ The IR data for **1** in the solid state (KBr) exhibit a strong peak at 1630 cm^{-1} assigned to the asymmetric stretch of the monodentate formate ligand. A similar peak is found in the IR spectrum of 1 in CH₃CN at 1625 cm⁻¹. The NMR and IR data suggest that the solid-state structure of **1** is retained in solution.

Attempts to synthesize the mononuclear zinc analogue of **1** via commercially available $Zn(O_2CH)_2 \cdot 2H_2O$ and Py_2SH led instead to the isolation of the dinuclear complex **2** (Scheme 1). The X-ray structure of **2** (Figure S1) shows that the Py_2S^- ligand is coordinated in the expected tetradentate fashion, and the formate ligand is coordinated in the open site. However, unlike in **1**, the thiolate and formate ligands bridge to a second tetrahedral $Zn(O_2CH)_2$ unit. The distances around each zinc ion are unexceptional, including the Zn-N(amine) distance of 2.264(2) Å. Suspecting that the dinuclear nature of **2** was a consequence of preformed structures from the $Zn(O_2CH)_2$ starting material, an alternative approach involving self-assembly of $Zn(BF_4)_2 \cdot H_2O$, NaO₂CH, and Py₂SH was investigated. As seen in Scheme 1, this method did result in a different structural motif, but instead of a mononuclear complex, the trinuclear complex **3** was obtained. The structure of **3** (Figure S2) reveals two terminal $(Py_2S)Zn^{\text{II}}$ units bridged by formate and thiolate ligands to a central, tetrahedral zinc ion. The terminal zinc(II) units exhibit typical five-coordinate geometries similar to that in **2**.

To gain further insight into the geometric preferences of mononuclear zinc (II) -formate and iron (II) -formate complexes, DFT calculations using B3LYP hybrid exchangecorrelation functional and 6-311G* basis set were performed on (PATH) $M^{II}(O_2CH)$ and (Py₂S) $M^{II}(O_2CH)$ (M = Zn, Fe). The X-ray structures of $(PATH)Zn(O_2CH)$ and 1 were used as starting points for the geometry optimizations of these compounds, as well as for the hypothetical species (PATH)- Fe(O_2CH) and (Py_2S) $Zn(O_2CH)$, respectively. Selected information for the optimized structures is given in Table 1. The optimized geometries for $(P_{V2}S)M^{II}(O_2CH)$ where M = Fe^{II} or Zn^{II} both show monodentate bonding for the formate ligand (isomer a, Table 1), as found for the X-ray structure of **1**. However, the formate is coordinated in a syn, instead of an anti fashion, causing the $M-O(2)$ distances to deviate significantly from the X-ray structure of **1**. The potential energy surface for these structures with respect to the $M-O(2)$ distance (3.0–4.0 Å) is quite flat (Figure S3). At

⁽¹⁰⁾ Krishnamurthy, D.; Sarjeant, A. N.; Goldberg, D. P.; Caneschi, A.; Totti, F.; Zakharov, L. N.; Rheingold, A. L. *Chem.-Eur. J.* **2005**, *11*, ⁷³²⁸-7341. (11) Addison, A. W.; Rao, T. N.; Reedjik, J.; van Rijn, J.; Verschoor, G.

C. *J. Chem. Soc., Dalton Trans.* **¹⁹⁸⁴**, 1349-1456.

Figure 2. Geometry-optimized structure of $(PATH)Fe^H(O₂CH)$ from B3LYP/6-311G* calculations.

Figure 3. Potential energy surface of $(PATH)M^H(O₂CH)$ along the ^M-O(2) bond from B3LYP/6-311G* calculations. For each point, geometry optimization has been carried out with the $M-O(2)$ bond length fixed.

much shorter $M-O(2)$ distances, another isomer is found (isomer b, Table 1). For $M = Fe^{II}$, isomer b is only slightly lower in energy (1.2 kcal/mol) than isomer a but does exhibit a bidentate bonding mode. In contrast, for $M = Zn^{II}$, the formate ligand in isomer b remains monodentate. Additionally, the M-N(amine) distance is much shorter in isomer b for the Fe complex, while it remains relatively long for the Zn complex. These calculations indicate that there is a modest, but clear, preference for higher coordination number with Fe^{II} as compared to Zn^{II} .

Such a preference is significantly more apparent for $(PATH)M^{II}(O₂CH)$ (Table 1). The optimized geometry of $(PATH)Zn^{II}(O₂CH)$ (Figure S6) is similar to its X-ray structure, which shows an anisobidentate bonding mode. However, a distinct shift to bidentate coordination is seen in the optimized structure of (PATH)Fe $^{II}(O_2CH)$ (Figure 2). Quantitation of this effect can be seen in the potential energy surface plots for (PATH) $M^{II}(O_2CH)$ versus $M-O(2)$ distance (Figure 3). This curve has a much sharper minimum for Fe^{II} than for Zn^{II} , and the equilibrium position for Fe-O(2) is 2.32 Å, within bonding distance. The energy minimum for $Zn-O(2) = 2.81$ Å, although the relative energy changes by only 0.5 kcal/mol as $Zn-O(2)$ varies between 2.2 and 3.3 Å. Thus, there is a clear preference for bidentate bonding of the formate ligand with iron(II) and hence higher coordination number, while for zinc (II) , the geometry is flexible and there is no bonding mode preference.

The role of the metal ion in PDF, as in other hydrolytic enzymes, may include activation of a water molecule to furnish a nucleophilic hydroxide in proximity to the substrate (Scheme 2a) or electrophilic activation of both H_2O and the substrate through coordination of the formyl group prior to hydrolysis (Scheme 2b).¹² In the latter case, the metal ion

also induces a proximity effect by bringing both reactants into the inner coordination sphere while proceeding through a five-coordinate intermediate. If other factors are held constant, the mechanism shown in Scheme 2b should lead to higher enzymatic activity. Moreover, Scheme 2a produces a monodentate formate product while Scheme 2b leads to bidentate bonding. A possible explanation for the dramatic reactivity difference between bacterial $Zn-$ and $Fe^{II}-PDF$ is that the iron(II) enzyme operates through the more efficient mechanism of Scheme 2b, while the zinc(II) enzyme functions through Scheme 2a.

We suggest that there is a distinct preference for a coordination number >4 by an N,S-ligated iron(II) ion, while a zinc(II) ion in the same environment does not show any geometric preference. For $(P_{V2}S)Fe^{II}(O_2CH)$, the metal center is already five-coordinate with a monodentate formate ligand, and thus, there is only modest stabilization observed upon moving to a bidentate formate. However, for $(PATH)Fe^H(O₂$ -CH), which most closely mimics the PDF active site, the Fe^{II} complex is significantly stabilized by a bidentate formate bonding mode, giving a five-coordinate iron center. It has been previously suggested that the Zn^H ion in PDF exhibits a preference for a four-coordinate environment, destabilizing the five-coordinate intermediate in Scheme 2b and causing the lower reactivity of bacterial $\text{Zn}^{\text{II}}-\text{PDF}.^{3,9}$ We propose that it is an *inherent geometric preference of FeII for a higher coordination number, which accounts for the much higher reactivity of Fe^{II}-PDF as compared to* Zn^{II} *-PDF.* This proposal assumes that the release of the formate ligand does not enter into the rate-determining-step or that the bonding mode does not affect the rate of release, as previously suggested.⁸ Kinetic and mechanistic studies of $(N_2S)M^{II}$ model complexes are ongoing in our laboratory to support this idea.13

Acknowledgment. This work was supported by the NIH (Grant GM62309 to D.P.G.) and the NSF (Grant CHE-CAREER-0448156 to Y.Z.).

Supporting Information Available: Experimental and computational details and crystallographic data for compounds **¹**-**3**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC050995S

⁽¹²⁾ Hegg, E. L.; Burstyn, J. N. *Coord. Chem. Re*V*.* **¹⁹⁹⁸**, *¹⁷³*, 133-165.

^{(13) (}a) diTargiani, R. C.; Chang, S. C.; Salter, M. H.; Hancock, R. D.; Goldberg, D. P. *Inorg. Chem.* **²⁰⁰³**, *⁴²*, 5825-5836. (b) Goldberg, D. P.; diTargiani, R. C.; Namuswe, F.; Minnihan, E. C.; Chang, S.; Zakharov, L. N.; Rheingold, A. L. *Inorg. Chem*. **²⁰⁰⁵**, *⁴⁴*, 7559- 7569.